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We found, by micromagnetic numerical and analytical calculations, that the clockwise �CW� and counter-
clockwise �CCW� circular-rotational motions of a magnetic vortex core in a soft magnetic circular nanodot are
the elementary eigenmodes existing in the gyrotropic motion with respect to the corresponding CW and CCW
circular-rotational-field eigenbasis. The oppositely rotating eigenmodes show a giant asymmetric resonance
behavior, i.e., for the up-core orientation the CCW eigenmode shows a strong resonance at the field frequency
equal to the vortex eigenfrequency, but the other CW eigenmode shows nonresonance. This asymmetric
resonace effect is reversed by changing the vortex polarization. The orbital radius amplitudes and phases of the
two circular eigenmodes vary with the polarization and chirality of the given vortex state as well as the field
frequency. The overall linear-regime steady-state vortex gyrotropic motions driven by arbitrary polarized
oscillating in-plane magnetic field in the linear regime can be perfectly understood according to the superpo-
sition of the two circular eigenmodes.
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INTRODUCTION

The magnetic vortex consists of the in-plane curling mag-
netizations �M’s� and the out-of-plane M’s at the center re-
gion, the so-called vortex core �VC�,1–3 which is known to be
a ground state in soft magnetic elements of micron size or
smaller. When, in such a confined system, magnetic fields �or
currents� with harmonic oscillations or pulses are applied to
the vortex, its VC rotates around its equilbrium position at a
characteristic eigenfrequency, �D /2�, typically, of several
hundred megahertz.4–10 The responsible force is the gyro-
force exerting on the VC, which is in balance with the re-
storing force due mainly to the long-range dipole-dopole in-
teraction dominating in a confined magnetic element.5 Such
vortex excitation is known to be the translation mode or
gyrotropic motion of a VC in the dot plane, and the rotation
sense of such gyrotropic motion is determined by the polar-
ization p of a given vortex, which is represented by the VC
M orientation �p= +1�−1� for up �down�-core orientation�. If
the angular frequency �H of an oscillating field �or current�
is close to the �D,5 the VC motion is resonantly excited.8–12

Recently, this resonantly excited VC gyrotropic motions un-
der harmonic oscillating field,8,9 ac current,10 or both of
them11 have been intensively studied. Moreover, the resonant
VC motion has attracted much attention on account of its
related ultrafast VC switching applicable to information
storage.13–18 In addition, the variation of the circular and el-
liptical shapes of the orbital trajectories of the on- and off-
resonance VC motions driven by linearly polarized oscillat-
ing magnetic fields was observed.7,8 However, the underlying
physics has not been clearly understood since the true eigen-
modes of the vortex gyrotropic motions remain incompletely
understood. In this paper, having considered the results of the
present theoretical and numerical simulation studies, we
posit that these VC motions can be clearly understood by
considering them to be the superposition of counterclockwise
�CCW� and clockwise �CW� circular-rotational eigenmodes

and also by considering their aysmmetric resonance effect.
The orbital-trajectory radius ampltidues and phases of the
oppositely rotating eigenmodes’ VC motions are presented as
a fucntion of the frequecy of oscillating fields according to
the different vortex polarizations and chiralities.

MICROMAGNETIC SIMULATIONS

In the present study, we employed micromagnetic numeri-
cal simulations of vortex M dynamics by using the OOMMF

code19 that utilizes the Landau–Lifshitz–Gilbert equation of
motion �M /�t=−��M�Hef f�+� / �M��M��M /�t� �Ref. 20�
with the phenomenological damping constant �, the gyro-
magnetic ratio �, and the effective field Hef f. Also, we
carried out analytical calculations of the linear-regime VC
motions,8 which are based on a linearized Thiele’s equation
of motion.21 As a model system, we chose a Permalloy
�Py� nanodot of 2R=300 nm diameter and L=10 nm
thickness �Fig. 1�a��. For the given Py material and circu-
lar dot geometry, a single magnetic vortex is present with
either p= +1 or −1 and with either C= +1 or −1, where
C= +1 �−1� is the chirality, which is represented by the
CCW �CW� in-plane M’s around the VC. The vortex eigen-
frequency and static annihilation field �Ref. 22� were esti-
mated to be �D /2�=330 MHz and HA=500 Oe, respec-
tively. We considered the application of either linearly
polarized oscillating magnetic fields applied along the y
axis, Hlin=H0 sin��Ht�ŷ, or circularly polarized oscillating
fields of either CCW or CW rotation sense in the dot
plane, such that HCCW= 1

2 �H0 cos��Ht�x̂+H0 sin��Ht�ŷ� and
HCW= 1

2 �−H0 cos��Ht�x̂+H0 sin��Ht�ŷ� with the oscillating
field amplitude H0. We used relatively low field amplitudes,
H0 /HA=0.1 and 0.2, in investigations of only linear-regime
vortex gyrotropic motions, so as to exclude the nonlinear
effect8,9 driven by high-strength fields. We also chose a fre-
quency range from �H /2�=100 to 825 MHz, including
�D /2�=330 MHz of interest, in order to investigate both the
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on- and off-resonance vortex gyrotropic motions.
First, we have to note that the orbital trajectory of the

Hlin-driven steady-state VC motion for the resonance case
�H=�D is exactly circular in shape and relatively large in
radius amplitude, even for a very weak field strength, e.g.,
H0 /HA=0.01 �Ref. 23� �see Figs. 1�b� and 1�c� and Supple-
mentary Movie 1 �Ref. 24��. For p= +1, the VC motion is
CCW and for p=−1, CW. In the case of off-resonance ��H
��D� motion, the orbits, however, become elongated along
the axis perpendicular to and parallel with the Hlin axis for
�H��D and �H��D, respectively, and the degree of their
elongations increases with the increasing magnitude of ��H
−�D� �Fig. 1�d��.8,11 Although such behaviors have been re-
ported from previous numerical and analytical studies,7,8,11

the underlying physics has not been understood yet.

For clear understanding, it is thus necessary to find out the
elementary eigenmodes of the gyrotropic motions. The ap-
plication of the Hlin is equivalent to the application of both
the pure circular fields of HCCW and HCW simultaneously,
with the same H0 and with equal �H �Fig. 2�a��, because Hlin
can, in principle, be decomposed into the HCCW and HCW
components.15 The relative phase between HCCW and HCW
determines the axis of the linearly polarized oscillating mag-
netic field. Thus, the observed circular or elliptical shape of
the orbital trajectories �Fig. 1�d�� can be interpreted accord-
ing to the superposition of the CCW and CW circular eigen-
motions in circular dots with respect to the HCCW and HCW
eigenbasis, as seen in Fig. 2�b� �see Supplementary Movie 2
�Ref. 24��. To verify this by micromagnetic simulations, in
Fig. 2�c�, we plotted the individual orbital trajectories of the
VC motions under the individuals of the HCCW and HCW, as
well as the Hlin for a specific case of �H /�D=2.5, H0 /HA
=0.2, and �p ,C�= �+1, +1�. The elliptical orbital trajectory
by Hlin is in excellent agreement with that obtained by the
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FIG. 1. �Color online� �a� Geometry and dimension of the model
Py nanodot with a vortex-state M distribution with p= +1 and C
= +1 at equilibrium under no field. �b� Perspective view of the local
M distributions at the indicated times and �c� the circular orbital
trajectory of the VC motion in the steady state, which is driven by
Hlin. The color and height display the local in-plane M orientation,
as indicated by the color wheel, as well as the out-of-plane M
components, respectively. The dots in �c� indicate the VC positions
at the indicated times. �d� Orbital trajectories of the steady-state VC
motions �t�90 ns� in response to the Hlin with different �H values
as noted for H0 /HA=0.1 and 0.2.
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FIG. 2. �Color online� �a� Graphical illustrations of the CCW
and CW circular eigenmodes and the corresponding HCCW, HCW,
FCCW, and FCW, as well as the definitions of the orbital-radius am-
plitude �XCCW,CW� and phase 	CCW,CW

H of the linear-regime steady-
state circular VC motions. �b� Graphical illustration of the superpo-
sition of the CCW and CW eigenmodes, yielding an overall
elliptical orbit. The black-colored ellipse �solid line� indicates the
resultant superposition of the individual CCW �blue-colored
�dashed� line� and CW �red-colored �dotted� line� eigenmodes,
which is equivalent to the elliptical VC motion driven by the Hlin

�black arrow�. The VC positions of the CCW and CW eigenmotions
at a certain time are indicated by the blue-colored square and red-
colored diamond, respectively, and their vector sum is indicated by
the black-colored dot on the ellipse. �c� Micromagnetic simulation
results on the VC trajectories of the CCW �blue open squares� and
CW �red open diamonds� eigenmotions driven by the individual
HCCW and HCW, respectively, as well as the VC trajectory �black
open circles� driven by the Hlin. The elliptical orbit �black solid
circles� results from the superposition of the individual CCW and
CW eigenmotions.
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superposition of the CCW and CW circular-rotational mo-
tions.

ANALYTICAL CALCULATIONS

Two circular-rotational eigenmodes

In order to theoretically verify and understand such dy-
namic responses of a vortex to any polarized oscillating field,
now we introduce a useful quantity of the dynamic suscep-
tibility tensor 
̂X defined by X= 
̂XH.12 For convenience,
first let us define the orbital radius �XCCW,CW� and phase
	CCW,CW

H of the VC position X in the dot �x-y� plane for the
CCW and CW circular motions �Figs. 2�a� and 2�b��. Here,
we exclude nonsteady transient-state motions that have yet to
reach the steady state, as well as the nonlinear effect.8,9 To
analytically calculate �XCCW,CW� and 	CCW,CW

H , we employed

the linearized Thiele’s equation21 of motion, −G� Ẋ− D̂Ẋ
+�W�X , t� /�X=0, with the gyrovector G=−Gẑ, and the

damping tensor D̂=DÎ with the identity matrix Î and the
damping constant D.5,12 The potential energy function is
given by W�X , t�=W�0�+��X�2 /2+WH. The first term W�0�
is the potential energy for a VC at its initial position X=0,
and the second term is dominated by the exchange and mag-
netostatic energies for the VC shift from X=0 and for the
given stiffness coefficient �. The last one, WH=−��ẑ
�H� ·X, is the Zeeman energy term due to a driving force,
where �=�RLMs
C, with 
=2 /3 for the “side-charge-free”
model.5,8,12 For any polarized oscillating field H
=H0 exp�−i�Ht�, i.e., linearly, circularly polarized oscillating
field, or their mixed polarizations, the general solution is
written as X=Xtrans+Xsteady,11 where the terms Xtrans and
Xsteady correspond to the VC motions in the transient and
field-driven steady states, respectively, given by Xtrans=
−X0 exp�−i�Dt�exp�D�Dt / �G�� with �D=��G� / �G2+D2�
�Ref. 17� and Xsteady=X0 exp�−i�Ht�. For t� �G / �D�D�� �t
�23 ns in this case�, the VC motions can be represented by
X�Xsteady=X0 exp�−i�Ht�. For the linear polarization basis,
the susceptibility tensor is X0,L= 
̂X,LH0,L with X0,L=X0xx̂
+X0yŷ and H0,L=H0xx̂+H0yŷ, where


̂X,L��H� = �
xx 
xy


yx 
yy
�

=
�

�i�HD + ��2 − ��HG�2� − i�HG − i�HD − �

i�HD + � − i�HG
� .

�1�

By the diagonalization of 
̂X, X0,L= 
̂X,LH0,L becomes X0,cir
= 
̂X,cirH0,cir with respect to the circular polarization eigenba-
sis, where H0,cir=H0,CCWêCCW+H0,CWêCW and X0,cir
=X0,CCWêCCW+X0,CWêCW with the circular eigenvectors of
êCCW= 1

	2
�x̂+ iŷ� and êCW= 1

	2
�x̂− iŷ�.25 X0,cir= 
̂X,cirH0,cir can

also be rewritten, in matrix form, as


X0,CCW

X0,CW
� = 

CCW 0

0 
CW
�
H0,CCW

H0,CW
� ,

where 
CCW��H�= i� / ��HG− �i�HD+��� and 
CW��H�
= i� / ��HG+ �i�HD+���. The term 
CCW,CW can be sepa-

rated into the magnitude �
CCW,CW� and phase 	CCW,CW
H by the

relation of 
CCW,CW= �
CCW,CW�e−i	CCW,CW
H

, where

�
CCW� = ���/	�G2 + D2���H − p�D�2 + �2D2/�G2 + D2� ,

�
CW� = ���/	�G2 + D2���H + p�D�2 + �2D2/�G2 + D2� , �2a�

and

	CCW
H = − tan−1��� − p�H�G��/��HD�� +

�

2
�1 − C� ,

	CW
H = − tan−1��� + p�H�G��/��HD�� +

�

2
�1 + C� . �2b�

Both �
CCW,CW� and 	CCW,CW
H are functions of �H, indicating

their �H variations. �
CCW,CW� also depend on the sign of p
but independently of the sign of C, whereas 	CCW,CW

H depend
on the sign of both p and C.

Next, the numerical calculations of the analytically de-
rived equations of �
CCW,CW� and 	CCW,CW

H were plotted
versus �H /�D for four different cases of �p ,C� in Fig. 3,
which are in excellent agreements with the simulation results
�circle symbols� obtained from the relation of �
CCW,CW�
= �XCCW,CW� / �HCCW,CW�. There exist strong resonances for
both �
CCW,CW� and 	CCW,CW

H at �H /�D=1 and the reso-
nance effects are asymmetric between the CCW and CW
circular motions. Only one, either the CCW or CW
motion, shows a resonance behavior, the other showing
nonresonance. This asymmetric resonance is caused by the

gyroforce �G� Ẋ�, which is essential for vortex gyrotropic
motion. The presence of the gyroforce leads to a broken
time-reversal symmetry, in turn, yielding a splitting of
the degeneracy of the CCW and CW eigenmodes. There-
fore, the vortex gyrotropic motion shows such asym-
metric resonance, responding differently to the orthogo-
nal CCW and CW circular fields. The asymmetric reso-
nance effect is reversed by changing from p= +1 to −1,
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FIG. 3. �Color online� Numerical calculations of the analytical
equations �solid and dashed lines� of �
CCW,CW��H��, 	CCW,CW

F ��H�,
and 	CCW,CW

H ��H� compared to micromagnetic simulations �shaded
circles� for the CCW and CW eigenmodes in response to HCCW

�blue �solid�� and HCW �red �dashed��, respectively, for the given
polarization and chirality �p ,C�, as noted.
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i.e., the mode showing the resonance is switched by p.
This can also be simply confirmed by the on-resonance
case equations, �
CCW��D��= ���� /��	�G2+D2� /D2 and
�
CW��D��= ���� /��	�G2+D2� / �4G2+D2�, which yield
�
CCW�� �
CW� for p= +1. Alternatively, for p=−1,
�
CCW��D��= ���� /��	�G2+D2� / �4G2+D2� and �
CW��D��
= ���� /��	�G2+D2� /D2, thus yielding �
CCW�� �
CW�. As a
result, for p= +1, the CCW rotational eigenmode has a large
motion amplitude, but the CW rotational eigenmode has an
extremely small motion amplitude, and which effect is re-
versed for p=−1.

On the other hand, the 	CCW,CW
H variations with �H are

remarkable, owing to its C as well as p dependences. The C
dependence of 	CCW,CW

H originates from the C dependence of
applied driving forces,26 such that FCCW

H =��ẑ�HCCW�
= ���e−iC�/2HCCW and FCW

H =��ẑ�HCW�= ���eiC�/2HCW. The
p dependence, meanwhile, is due to the already-mentioned
asymmetric resonance effect between �
CCW� and �
CW�. As
in the dynamic response of a linear oscillator to a harmonic
oscillating force, for �H��D, the phase difference 	CCW,CW

F

between the VC position X and FCCW,CW
H is always zero �i.e.,

in phase� and independent of C and p. However, for the other
case, �H��D, 	CCW

F =−��1+ p� /2, and 	CW
F =−��1− p� /2

depend only on p. Only for the case of the eigenmode show-
ing resonance, 	CCW,CW

F changes from 0 �in phase� at �H
��D to −� �out of phase� at �H��D �the second row of
Fig. 3�. In addition, it is worthwhile noting that such phase
change with �H occurs only for the eigenmode showing
resonance; it does not occur for the other opposite eigen-
mode. Thus, the complex changes of 	CCW,CW

H with �H,
which also depend on p and C, can be interpreted simply
according to 	CCW

H =	CCW
F +C� /2 and 	CW

H =	CW
F −C� /2 �the

third row of Fig. 3�.

Elliptical shape and orienation of orbital trajectories

According to the above-mentioned relations of �
CCW,CW�
and 	CCW,CW

H with �H /�D as well as p and C, the CCW and
CW circular-rotational motions can be expressed by the
simple mathematical expressions of XCCW=
CCWHCCW and
XCW=
CWHCW, where HCCW=H0,CCW exp�−i�Ht�êCCW and
HCW=H0,CW exp�−i�Ht�êCW. Consequently, the superposi-
tion of the individual circular eigenmodes thus provides a
resultant VC gyrotropic motion driven by an Hlin. For this
concrete verification, the individual orbital trajectories of the
XCCW and XCW and their superposition were also obtained
from the analytical calculations, for example, for �H /�D
=0.3 and 2.5 with H0 /HA=0.2 and for all the cases of �p ,C�.
In Fig. 4, the analytical calculations �solid lines� are in ex-
cellent agreements with the simulation results �open circles�.

From the relations between the orbital trajectories of the
two circular-rotational eigenmodes and their superposition,
as shown in Fig. 4, we have found that the degree of elon-
gations of the elliptical trajectories �black-colored lines� for
�H /�D=0.3 and 2.5 is determined by the relative difference
between �XCCW� and �XCW� and is independent of �p ,C�. On
the contrary, the elongation axes of the elliptical orbital tra-
jectories corresponding to the motions under an Hlin are per-
pendicular to the Hlin for �H /�D=0.3 and parallel with the

Hlin for �H /�D=2.5. This is associated with the relative
phase of 	CCW

H and 	CW
H , i.e., �	CCW

H −	CW
H �=� �out of phase�

for �H /�D=0.3�1 and �	CCW
H −	CW

H �=0 �in phase� for
�H /�D=2.5�1 �see Fig. 3 and Table I�. For the case of the
out of phase �in phase� between the two eigenmodes, the VC
position vectors of the opposite eigenmodes on the applied
Hlin axis are always antiparallel �parallel� to each other,
whereas they are always parallel �antiparallel� on the axis
perpendicular the Hlin direction. Thereby, the resulting or-
bital trajectories of the superposition of the oppositely rotat-
ing circular eigenmotions, are ellipse in shape, and their
elongation axes are perpendicular �parallel� to the Hlin direc-
tion for �H /�D�1 ��H /�D�1�, which is independent of
�p ,C�.

The rotation sense of the elliptical VC motions is CCW
direction because of �XCCW�� �XCW� for all p= +1 cases,
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FIG. 4. �Color online� Analytical �solid lines� calculations and
simulations �open circles� of the orbital trajectories of the VC mo-
tions driven by HCCW �blue �dark gray�� and HCW �red �light gray��,
as well as Hlin �black� for each case of �p ,C�. The phase relation
between the VC position �closed dots� and the circular field direc-
tion �arrows� is illustrated. The arrows on the circular or elliptical
orbits indicate their rotation senses.
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whereas thus the rotation sense is CW direction for all the
cases of p=−1 because of �XCCW�� �XCW� �see Fig. 3 and
Table I�. As a result, it is evident that the degree of elonga-
tion and its major axis of the elliptical orbital trajectories of
those linearly oscillating-field-driven vortex motions shown
in Fig. 1�d� are determined by the relations of �
CCW,CW� and
	CCW,CW

H with �H.
For more quantitative understanding, it is convenient to

define the ellipticity �G as the ratio of the length of the
major �a� to that of the minor �b� axis, and the rotation �G
as the angle of the ellipse’s major axis from the Hlin axis
�the y axis in our case, see Fig. 5�a��, as in the Kerr
or Faraday ellipticity and rotation in magneto-optics.27 The
numerical values of �G and �G, which are �G= ��XCCW�
− �XCW�� / ��XCCW�+ �XCW��= ��
CCW�− �
CW�� / ��
CCW�+ �
CW��
and �G= �	CCW

H −	CW
H � /2 by definition, were plotted versus

�H /�D in Fig. 5�b� for the all cases of �p ,C�. Note that the
analytical calculations �solid lines� of �G and �G are in ex-
cellent agreements with the simulation results �open sym-
bols�. Owing to the resonance characteristics of either the
CCW or CW eigenmode for a given p, �G and �G dramati-
cally change across �H /�D=1 such that �G= +1 or −1 �in-
dicating that the orbital trajectory shape is circular� and �G
= +� /4 or −� /4 �Fig. 5�.28 �G�0 ��G�0� represents the
CCW �CW� rotation of the resultant VC gyrotropic motion
driven by a linearly polarized oscillating field. It is worth-
while noting again that since the relative magnitude of
�
CCW� and �
CW� is determined by p, not by C, �i.e.,
�
CCW�� �
CW� for p= +1 and �
CCW�� �
CW� for p=−1�,
�G�0 for p=−1 and �G�0 for p= +1, and by contrast �G
depends on both p and C because of their dependences of
	CCW,CW

H . The sharp variation of �G from � /2 to 0 with in-
creasing �H across �D indicates that the major axis of the
ellipses changes from the x axis to the y axis. From the
calculations of 	CCW,CW

H for each case of �p ,C�, we can esti-
mate that �G= +� /2 or −� /2 �the major axis is perpendicu-
lar to the Hlin axis� for �H��D, and that �G=0 �the major
axis is parallel to the Hlin axis� for �H��D, regardless of p
and C. For all the cases of �p ,C�, those results are summa-
rized in Table I for the two different cases of �H /�D=0.3
and 2.5.

CONCLUSION

We found that the CCW and CW circular-rotational eigen-
modes are the elementary eigemmodes existing in the vortex

TABLE I. Numerical estimates of 	CCW,CW
F ��H�, 	CCW,CW

H ��H�, �
CCW,CW��H��, �G, and �G for the results
shown in Fig. 4.

�p, C�
�H /�D

�1, 1� �−1, 1� �1, −1� �−1, −1�

0.3 2.5 0.3 2.5 0.3 2.5 0.3 2.5

	CCW
F 0 −� 0 0 0 −� 0 0

	CW
F 0 0 0 −� 0 0 0 −�

	CCW
H � /2 −� /2 � /2 � /2 −� /2 � /2 −� /2 −� /2

	CW
H −� /2 −� /2 −� /2 � /2 � /2 � /2 � /2 −� /2

�XCCW� / �XCW� 1.86 2.33 0.54 0.43 1.86 2.33 0.54 0.43

�G 0.3 0.4 −0.3 −0.4 0.3 0.4 −0.3 −0.4

�G � /2 0 � /2 0 −� /2 0 −� /2 0

1.0
0.8
0.6
0.4
0.2
0.0

0.0
-0.2
-0.4
-0.6
-0.8
-1.0

0.0
-0.2
-0.4
-0.6
-0.8
-1.0

0.75

0.50

0.25

0

-0.25
0.25

0

-0.25

-0.50

-0.75
0.25

0

-0.25

-0.50

-0.75
0 1 2 3

Dω ωH

(
ra
di
an
s
)

ππ
θ Gθ G

=
b/
a

η Gη G

0 1 2 3

Dω ωH

(-1,-1)

(1,-1)

(-1,1)

(a)

θG b

y

a

= b/aηG
(b)

(
ra
di
an
s
)

ππ
θ Gθ G

=
b/
a

η Gη G

(p ,C)
= (1,1)

1.0
0.8
0.6
0.4
0.2
0.0

0.75

0.50

0.25

0

-0.25

(
ra
di
an
s
)

ππ
θ Gθ G

(
ra
di
an
s
)

ππ
θ Gθ G

=
b/
a

η Gη G
=
b/
a

η Gη G

x

FIG. 5. �Color online� �a� Illustration of the definitions of �G
and �G described in the text. �b� Numerical estimates of �G and �G
from the micromagnetic simulations �symbols� and numerical cal-
culations of the analytical equations �solid lines� for all cases of
�p ,C�, as noted. The simulation results correspond to the cases
shown in the first column in Fig. 1�d�.
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gyrotropic motions in circular nanodots and that the two
eigenmodes’ resonant excitations are largely asymmetric, ac-
cording to the vortex polarization. The relative magnitudes in
the orbital-radius amplitude and phase between the two cir-
cular eigenmodes determine the elongation and orientation,
respectively, of the orbital trajectories of the vortex core mo-
tions driven by a linearly oscillating field. These results pro-
vide information on how the orbital-radius amplitude and
phase of a vortex core motion vary with the polarization and
chirality of the given vortex state as well as the field fre-
quency, resulting in overall linear-regime steady-state vortex
gyrotropic motions driven by any polarized oscillating fields.
Due to the distinctly different asymmetric resonance effect
between the CCW and CW circular motions on resonance,
the CCW and CW circular fields with the resonance fre-
quency can be used to selectively switch upward and down-
ward oriented vortex cores, respectively, as well as to selec-

tively excite the large-amplitude CCW and CW gyrotropic
motions of the upward and downward vortex cores, respec-
tively. From a technological point of view, these allow for
selective, reliable switching of the magnetization of vortex
cores with low power consumption and the indirect detection
of the VC orientation by monitoring the large shift of the
vortex core position or the largely asymmetric in-plane M
orientations through directly measuring induced voltage or
tunneling magnetoresistance and giant magnetoresistance
contrast with pinned reference spin configurations in the
other ferromagnetic layers.
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